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Asymptotic Behavior of Energy Band Associated 
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The mathematical foundation of the tight binding approximation is given. If 2 o 
is a negative energy level of a real potential q, then there exists an energy band 
for a one-dimensional chain with period 2T of the same atoms which lies near 
2 0. We study this band when T tends to infinity. 
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I N T R O D U C T I O N  

I discuss the energy band  in a one-dimensional  chain of identical a toms 
with well-localized a tomic states. This problem is usually studied in 
the framework of  the tight binding method(l'3): a Bloch function is 
approximated  by a linear combina t ion  of a tomic orbitals ( L C A O  method) ,  
and with the help of this Bloch function the corresponding energy band can 
be calculated. The tight binding method  is expected to give reliable results 
only for bands generated by well-localized a tomic states. The main 
criticism of the method lies in the difficulty of testing its convergence. On  
the other hand, if the states are not  well-localized, the energy band  equa- 
tion is quite difficult to evaluate due to the presence of  three-center 
integrals. A common,  but not  always valid, approximat ion  is to neglect 
these integrals al together (two-center approximat ion) .  If the two-center 
approximat ion  is adopted,  then for a one-dimensional  chain one can get 
the band  formula [see Eq. (2.3)]. In Eq. (2.3) the integral shows the 
"crystal field integral" and the next term coincides with the "interaction 
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integral" (ref. 3, p. 104). The parameter d in Eq. (2.3) can be writen as 
2 cos 2Tm, where m is a Bloch wave number or a quasimomentum. In this 
paper I give the mathematical foundation of Eq. (2.3) if a potential function 
satisfies Eq. (1.2). It should be noted that Eq. (2.3) is not true in the general 
case (ref. 3, pp. 107 108). 

1.  O N E  A T O M  

First we consider the one-dimensional Schr6dinger equation 

- y ' ( x ) + q ( x )  y(x)=2y(x),  - o o  < x <  +oo (1.1) 

for a real potential q(x) that 

f [ql dx < oo and lim T Iql dx=O (1.2) 
- -oo T ~  + ~  bx l>~y  

The spectrum al(q) c ~ of this atom consists of a finite number ~2) of 
negative energy levels and the half-axis [-0, + oo). Let 2o < 0 be an eigen- 
value and let O(x) be a solution of Eq.(1.1) with 2 = 2 o  such that 
S+_~ 02 dx= 1, i.e., 0 is a normalized eigenfunction. Let q)(x) be another 
solution of Eq. (1.1) with 2 = 2o such that the Wronskian 0~0 ' -0 'q)=  1; 
then for some constants Co.~o > 0 and C+ ~ 0 we have 

10(x)l ~< Coe kl~l ,  I~p(x)l ~< C~oe klxl, --O(3 < X <  +oo 

C_+ = l im O(x) e kt~l = T- l im O'(x) eklXl/k 
X ~  + c O  X ~  + c O  

( 2 C _ + ) - l = _ +  lim kcp(x) e-klxl= lim ~o'(x)e -klxl 

(1.3) 

(1.4) 

(1.5) 

Here k = ( - 2 0 )  1/2. 
For  later use we ill need the following combination of two functions f (x)  

and g(x): 

[f ,  g ] (x)  def f (x )  g '(--x)--  f ' (x )  g(--X) (1.6) 

Then for the solutions 0 and q) of (1.1) using (1.4)-(1.5) we will establish 
the following asymptotic formulas (Ix] ~ +oo): 

a ( x ) =  [~0, ~p](x)=(2C+C_k) 1 e2klxl[1 + o ( 1 ) ]  (1.7) 

b(x) = [0, (p] (x)=  o(1) (1.8) 

c(x) = [0, 0](x)  = 2C+ C_ke-2klxl[1 + o(1)] (1.9) 
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2. INF IN ITE  C H A I N  OF A T O M S  

For some T > 0 ,  using the potential q(x), we consider the periodic 
potential 0(x, T) [in shortened form, c~(x) or ~] with period 2T defined by 

+ o o  

~(x, T)=  ~ q(x+ZTn) (2.l) 
n = of) 

We now consider the Schr6dinger equation 

-y"(x)+O(x, T) y(x)=2y(x), - o o  < x <  +oo (2.2) 

The spectrum ~r~(T, q ) ~  N~ of this chain consists of intervals (allowed 
energy bands) a finite number of which belong to the half-axis ( - o o ,  0) 
(ref. 7, p. 290). Pavlov and Smirnov (6~ have proved that if xq(x)e LI(N1), 
then there is an allowed energy band which lies near the eigen- 
value 2 o = - k  2 (k > 0) of the potential q(x) and its width A(k, T) is of 
order e - 2 T K  when T ~  +oo. It was found Kirsch etal. (s) that if 
q(x) e 2alxl eLl(N1), then 

lim A(k, T) e2rk=8k[Jdt ~(ik)/dzl] -1 
T ~  + c ~  

Here t(z) is the transmission coefficient for the operator 1 = -d2/dx2+ q 
and - a  2<inf(spectrum 1). In this paper we shall prove the following 
asymptotic formulas for the nearest band. There is a constant t such that 
for every T >  t and for every de  [ - 2 ,  2] the number 2(d, T) which is given 
by 

T 

2(d, T ) = 2 o + f  (O-q)O2dx-2dkC+C e-2rk+e(d, T) (2.3) 
T 

belongs to the nearest band. Here e(d, T) is a "small" function. If d =  +2, 
we obtain the limits of this band and 

lim A ( k, T) e2rK = 8k [C+C_I 

Remark.  It would be interesting to find the direct proof of the 
identity [tdt-~(ik)/dzl ] -~ = IC+ C I. 

3. T H E  B A N D  S T R U C T U R E  E Q U A T I O N  

To find the spectrum ~r~, we first need two linearly independent solu- 
tions qS(x) and O(x) of Eq. (2.2) with Wronskian ~ '  - 0'q5 = 1. If we put 

F(2, T )=  [0, @](T) + [0, ~b](- T) (3.1) 

822/59/3-4-9  
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then (ref. 4, p. 64) 

a~(T, q )=  {2~ RI: IF(2, T)I ~<2} 

Therefore the band limits are defined by 

F(2, T )=  +2 

We shall consider (3.3) only near 2o. 

Oleinik 

(3.2) 

(3.3) 

4. C O N S T R U C T I O N  OF q~ A N D  

We construct ~(x) and ~(x) using the method of variation of 
constants. Putting ~: = 2 - 20, 

v(x, T)=  ~(x, T ) - q ( x ) ,  w(x, to, r ) = v ( x ,  T ) -~c  (4.1) 

we can write the Schr6dinger equation (2.2) as 

- y "  + (q - 20) y = - w g  (4.2) 

(a) The functions q~ and 0 are solutions of (4.2), with the right-hand 
side being zero. Therefore we put 

~b(x) = c~(x) [q0(x) + 7(x) 0(x)] (4.3) 

Here e(x) and 7(x) are such that ct(0)= 1, 7(0)= 0, and 

c~'(x)q)(x) + [c~(x)7(x)]' O(x) = 0 (4.4) 

As a consequence of (4.4), we have ~(0)=  q~(0), ~ ' (0 )=  (p'(0), and the 
function O(x) will be the solution of (4.2) if and only if the functions c~(x) 
and 7(x) are the solutions of the following system of nonlinear differential 
equations: 

c~' = c~wO(~o + 70), ~(0) -- 1 
(4.5) 

7' = -w(q ,  + 70) 2, ~(o) = 0 

Here we have used (4.4) and the identity 0~o' - 0'r = 1. 
The system (4.5) is equivalent to the system of nonlinear Volterra 

integral equations 

f2 c~(x) = exp wO(q~ + 70) d~ 

(4.6) 

~(x) = - I  x w(q~ + 70) 2 d~ 
Jo 
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As will be shown later, in fact we have to find only 7(x) and then to 
calculate c~(x). 

(b) Furthermore, we shall need to construct the solution O(x) of 
(4.2) such that the Wronskian OqY-0'(o = 1. In order to do so, we put 
~(x)=c~ ~(x)O(x)+~l(x)co(x) with ( ~ - I ) ' 0 + ~ I C O = 0  and ~ i (0 )=0 .  
Thus O'=~-lO'+cqcp ' and the Wronskian relation O~7'-O'~b=l holds 
since O(x) CO'(x) - O'(x) Co(x) =- c~(x). The function O(x) will be a solution of 
(4.2) if and only if 

~,(x) : fo w02c~-2 dd (4.7) 

Indeed, O(x) is the solution of (1.1) with )~=20 and ~(x) is that of (4.2). 
Therefore, substituting ~ into (4.2), we get the system 

(~ 1)' 0 -[- 0~ICO = 0 

(~- -1) ,  Ot..~ ~i COt = wO/o~, 0~1(0) = 0 
(4.8) 

and since 0CO'-0'CO- e, this yields (4.7). 
For later use we remark that the functions a, ~, and ~1 depend on x, 

~c, T, and 2o = - k  2. 

5. T H E  P R I N C I P A L  E Q U A T I O N  

Now inserting ~ and CO into 
(1.7)-(1.9), we obtain 

F(~c - k 2, r )  = [cq( r )  - e , ( -  r ) ]  c~(r) c~( - T){a(T) 

~( T) b( T) - ~ ( -  T) b ( -  T) + ~( T) , ; ( -  T) c(T)} 

+ {b(T) e ( -  T)/~(T) + c(T) 7 ( -  T) c~( - T)I~(T) 

+ b( - T) ~(r)/~,( - T) + c( - T) ~(T) ~(T)/c~( - r) } 

Let 

(3.1) and using the abbreviations 

(5.1) 

G=~_~+(a+?+b+ +7_b_ + y + 7 _ c )  (5.2) 

H = ( b + + y _ c ) ~  / u+- (b_+, /+c)~+/~_  (5.3) 

with 7_+ = ~ ( +  T), y+ = ? ( _ T ) ,  a=a(T), b+_+ = +_b(+_T), and c=c(T). 
The functions H and G depend on x, T, and k. So from (5.1) we find 

T 
F(rc-k  z , T ) = G  I (v-~c) 02c( 2 d x + H  (5.4) 

--T 
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Hence for every de  [ - 2 ,  2] the band structure equation F = d  can be 
rewritten in the form 

K = 1)020~ 2 dx + ( H -  d)/G 02{x -2 dx (5.5) 
- - T  T 

For the sake of simplicity, we write (5.5) as 

Thus, we have established the principal equation for ~:. We remark 
that the function f depends also on d, T, and k. As will be shown later, 
~--,,1, H.-+O, G - I - = 2 k C + C  [1+o(1)]  e x p ( - 2 k T ) w h e n  T ~  +Go and 
~c-+0. Therefore it is clear that the asymptotic formula (2.3) should be 
valid. Equation (5.1) was found by the author and L. K. Lapshin. 

6. ESTIMATES OF THE FUNCTIONS V(X) AND a(x)  

Let 

p( T) = f lxl >>- r 

It follows from (1.2) and (4.l) that 

T 

p ( T ) = f  Ivl d x + e  -2gr 
- T  

Iql dx + exp(-2kT)  (6.1) 

and lim Tp(T)--O (6.2) 
T ~  + o c  

Using the function p(T), we shall get the required estimates. 
To formulate the problem precisely, we make the following assump- 

tion concerning ~: For some positive constant C~ and for every T 

]~c] <~ C,~p(T) (6.3) 

According to (4.6), we will need to study the nonlinar Volterra equation 

7(x)-- [ • -  v(O] [~0(~) + 7(3) 0(~)3 ~ d~ (6.4) 

The solution of this equation behaves asymptotically for 
exp(2k Ix[ ). 

Therefore we introduce the new function 

Ixl,> 1 a s  

Z(x)  = ?(x) exp( - 2 k  Ixi) (6.5) 
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which satisfies the equation 

Z ( x ) =  e2k(lr (6.6) 

with q)o(X) = q)(x) e x p ( - k  Ix]), and Oo(x) = O(x) exp(k ]x]). The function 
Z(x) will therefore be a bounded function on [ - T ,  T]  uniformly with 
respect to T. 

For  the proof we shall use the principle of contractive mappings on 
the space of continuous functions C [ - T ,  T]  with the norm 

IlZll--- max IZ(x)l (6.7) 
[ -  T.T] 

Let A be an operator on the right-hand side of (6.6), i.e., 

f2 AZ(x) = e 2k(rr -Ixl)(~c - v)(~o o + Z0o) 2 d~ (6.8) 

The operator A maps the closed unit ball 

B~(T) = { Z 6 C [ - T ,  T]:  IlZll ~< 1} 

into itself for sufficiently small T 1 and ~c. Indeed, the estimates (1.3) give 

IOo(x)[ <<. Co, I~oo(x)l ~< C~, - ~ < x <  + ~  (6.9) 

Hence if Z ~ B 1 and x e [ - T, T],  we obtain 

r2 ) IAZ(x)I <~\~-Ixj [vl d ~ + 2  j~c[ e-Zk'dt (C~+Co) 2 

] = Ivl d~+l~:] ( 1 - e  2klxl)/k (Ce+Co) e (6.10) 
L~-ixl 

By the assumption (6.3) 

[tAZII <~ (1 + C~/k)(Co + Co) e p(r)  (6.11) 

Therefore, by (6.2), there is T o > 0 such that for every T >  To 

IIAZII ~ 1 (6.12) 
if Z ~  BI. 

On the other hand, A is a contractive operator on B~. To see this, let 
Z~, Ze ~ B~. Then, as above, 

ItAZ~-AZeri<~2(I +C~/k)Co(C~o+Co) p(T) ItZI-Z21] (6.13) 
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Hence we may set To such that for every T >  To 

]IAZ1- AZ2]l ~< IIZl- z21[/2 (6.14) 

if Z1, Z2 ~ B1. 
Finally, if To is such that 

p(T) <~ [4(i + C~/k)(C~o + Co) 2] 1 (6.15) 

then we have both (6.12) and (6.14) on B1. Hence, for every T >  To and for 
every x ~ [ - C ~ p ( T ) ,  C,~p(T)] there exists one and only one solution Z(x) 
of (6.6) on the interval Ixl ~< T satisfying the condition IlZll ~< 1. Hence, if 
x ~ [ -  T, T], then 

I~(x)l ~ tlZll eZklxl = [IAZll eZklxl ~ C v p( T) e 2klxl (6.16) 

with Cr = (1 + C~/k)(C~o + Co) 2. 
For later use we will need an estimate of the derivative O7/~3x of the 

function 7 with respect to the parameter ~c. Since ~7/a~: = aZ/a~c exp(2k lxl ), 
putting u = c~Z/O~:, we shall consider the identity 

u(x) = e 2k(tr -ixl)(~o o + ZOo) z d{ 

+ 2 fo e2k(lr txt)(~c - v)(~~176 + ZOo) Oou d{ (6.17) 

For the sake of simplicity, we write (6.17) as 

u(x) = g(x) + Vu(x) (6.17') 

Since Hglt ~ (C~o + Co)2/k and since the inequality 

II vii ~< 2(1 + C,Jk) Co(C~o + Co) p(T) <~ 1/2 (6.18) 

holds by (6.15), we can find U(x) from (6.17) by using the Neumann series 
for the solution of the linear integral equation. Therefore 

Ilull ~<(1 -II  vii) -1 ilgll ~<2 Ilgll <~2(Cq, q-Co)2/k 

Hence 

• (X) <~ C'~,e 2I<xl 

with C'~ = 2(C~ + Co)2/k. Accordingly, we have the following results. 
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k e m m a  6.1. Let C~ be a positive constant. There exists a positive 
number To such that for every T>~To and for every ~e[-C~p(T) ,  
C~p(T)] there is one and only one solution 7(x) of Eq. (6.4) such that on 
the interval Ixl ~< T 

[7(x)l ~< C, p( T) exp( 2k ix[) (6.16') 

l~?7(x)/D~c[ ~< C'~ exp(2k ix[) (6.19) 

with the constants C~ = (1 + C~/k)(C~ + Co) 2 and C'~ = 2(C~ + Co)2/k. 
Note that we may choose To such that for every T>~ T o 

f ]q[dx+e-2kr<.[4(l+C~/k)(C~o+Co) 2 ] ~ (6.20) 
Ix[ ~> T 

Hence one can solve (6.4) by the method of successive approximations. 
Hence from (4.6) we obtain 

f/ In c~(x) = [ v ( ~ ) -  tc] 0(~)[(p(~) + 7(~) 0(~)] d~ (6.21) 

We will need estimates of the function In :~(x) and its derivative 0 In c~/0~c. 

I . emma 6.2. Let C~, Ca, and C'~ be positive constants such that 
Ca>C~CoC~ and C'~>CoCK. Let To be a positive number as in 
Lemma6.1. There exists a number TI>~To such that for every 
~c ~ [-C~p(T), CKp(T)] we have the estimates 

[]In cr <~C~Tp(T) and []0 In ~/&cN ..~C~T (6.22) 

Proof The proof is identical to the one for Lemma 6.1. Let T~> To. 
By (1.3), (6.3), and (6.16'), we have 

[C o + C, Cop(T)] <~ Tp(T)(T-' + C~) Co[C~o + C~Cop(T)] 

Hence there is T~/> To such that 

C~CoC o < (T ~ + C~) Co[C~o+ C, Cop(T)] <~ C~ 

and ]iln all ~ C~,Tp(T) as T~> T,. 
Similarly, by (6.19) and the definition (6.21), we have 

~< 0(q~ + 70) d~ + fo (v - ~c) 02 d~ 

<~ CoEC~o + C,~Cop(T)] T+ (T  - I  + CK) C~C',Tp(T) <~ C'~ T 



674 Oleinik 

when T1 is such that for every T>~ T1 

CoC~o<Co[C~+CTCop(T)]+(T-~+C,~)CoC~p(T)2 , <~C~ 

R e m a r k .  We can set, for instance, C~=C~CoC~+ 1 
C'~ = Co C~ + 1. 

and 

7. E S T I M A T E S  OF THE F U N C T I O N S  H A N D  G 

It should be noted first that the functions G(~) and H(~:) depend 
on T. 

k e m m a  7.1. Let C~, Cg be positive constants and Cg > 2k ]C+C_I. 
Let T~ be as in Lemma 6.2. There is a positive number T2 ~> T1 such that 
for every T~> T 2 we have 

IG(~c, T)I ~ Cg 1 exp(2kT) (7.1) 

as IKI ~< C~p(T). Furthermore, if T tends to the infinity, then 

1/G(K, T) = 2kC+C [1 + o(1)] exp( -2kT)  (7.2) 

uniformly with respect to ~: ~ [ - C ~ p ( T ) ,  C~p(T)]. 

Proof. By (5.2), using the estimates (1.7) (1.9), (6.16'), and (6.22), 
we obtain 

IG(•, T)I ~> [(2k IC+C_l)  ~ - el( T ) -  ZC~ p( T) e2( T) 

- C~2k [C+C_ I P(T) 2 ~3(T)] e x p [ 2 k T -  2C~Tp(T)] 

with O<ej(T)=o(1) as T ~  +c~. This inequality yields (7.1). Finally, 
combining (5.2) and (1.7) as above, we obtain (7.2). QED 

k e m m a  7.2. The function H(x, T) is o(1) uniformly with respect to 
~c~ [-C~p(T) ,  C~p(T)] as T--+ +oo. 

Proof. By (5.3) and (1.8)-(1.9), we have 

[H(K, T)[ ~< 2[~(T) + Crp(T)] exp[2C= Tp(T)] = o(1) 

k e m m a  7.3. Uniformly with respect to Ke [-C~p(T) ,  C~p(T)], 
we have 

(; 02c~ 2dx = 1+o(1)  (7.3) 
T 

as T ~  +oo. 
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Proof. By (6.22) and the normalization condition, we obtain 

T 

f r  0 2 d x e _ e ( T ) ~  02o~-2dx~e  e(T) 
-T  ~ T 

where e(T)=2C~Tp(T) is a small function. Hence, the formula (7.3) 
holds~ QED 

8. E X I S T E N C E  P R O O F  FOR T H E  E N E R G Y  B A N D  

T h e o r e m  8.1. Let C~ and d o be positive constants and 
C~ > max(C~, 2k [C+C_I do). There exists a positive number t o such that 
for every T>~t o and for every d~ [ - d  o, do], Eq. (5.5) has one and only 
one solution such that [tc] ~< C~p(T). 

Proof. The equation tc=f0c)  can be solved by the method of suc- 
cessive approximations. First we will need to prove that if [tr ~< C~p(T), 
then 

ff(~c)l ~< C~p(T) (8.1) 

Indeed, using Lemmas 7.1-7.3, we obtain 

I;  1 [f(tc)]~< C 2 _ r [ v l d x [ t + o ( 1 ) ] + ( l g [ + d o ) / G  [ 1 + o ( 1 ) ]  

= C  2 fr_r [vl dx+ 2k ]C+ C_ I doe 2kT-+'o[p(r)] 

~<max(C~, 2k I C + C  I do) p(T)+ o[p(T)] <~ C~p(T) 

where T is a sufficiently great number. 
On the other hand, we shall prove that there is to such that for every 

T~> to and Ix] ~< C~p(T) we have the estimate 

If'(K)j ~< 1/2 (8.2) 

Putting f(~c)=fl(~c)f2(~c ) with f2(~C)=(~TT02a 2dx) i we obtain 
f~=O(p(T))  and f 2 =  1 +o(1 )  as T ~  +oo. To estimate the derivates, we 
shall use Lemmas 6.1 and 6.2. Hence H'(~c)= o(T), 

G'Oc) = O[ T exp(2kT) ] 

If',(m)( 2 , f r  <~2CoC~T Ivl dx+ IH'/GI + (IHI + d o ) l a ' / a 2 f  
T 

= O[rp(T)] + o[Te -2kT) + O(Te -2kT) = O[Tp(r)] (8.3) 
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and 
If~(~)l ~< 2f2(K) II~? In ~/~cll = O(T) (8.4) 

as T-* + oe. This gives 

tf'(~c)l = O[Tp(T)] (8.5) 

Therefore there is a positive number to such that for every T>~ to and 
I~:1 ~< C~p(T) the estimate (8.2) is valid. 

According to (8.1) and (8.2), Eq. (5.5) can now be solved by the 
method of successive approximations. QED 

Let do~>2, C > m a x ( C ~ ,  2k IC+C_I do) and let ~c(d, T) (Idl ~<do) be 
the solution of Eq. (5.5) such that I~c(d, T)I <~ Cp(T) for T large. We know 
[Eq. (3.2)] that 2(d, T)=2o+~c(d,  T)E~oo(T,q), if de  [ - 2 ,  2] and 
2(d, T) r a~(T, q) when ]d] > 2. Therefore the interval {~(d, T): - 2  ~< d~< 2} 
coincides with the energy band which lies near 2o. 

9. A S Y M P T O T I C  F O R M U L A S  FOR THE B A N D  

We shall now prove the asymptotic formulas for the band. 

Theorem 9.1. Fix a function q(x) obeying (1.2) and let ~(x, T) be 
given by (2.1). Suppose that 2o = - k 2 <  0 and that O(x)E L2( - 0% + oo) is 
a normalized solution of the Schr6dinger equation 

-y"(x) + q(x) y(x) = 2o y(x) 

Let Co, C+ be given by (1.3), (1.4). If C>max(C2,4klC+C I) and 
~(d,T) is a solution of Eq.(5.5) with d ~ [ - 2 , 2 ]  such that 
[~:(d, T)] ~< Cp(T) for T large, where p(T) is given by (6.1), then: 

1. 2(d,T)=2o+~c(d,T)Ea~(T,q), d E [ - - 2 , 2 ]  

2. 2(-t-2, T) are the edges of the band 

3. 2(d, T)=20 + ~TT[~(X, T)--q(x)] 02(x) dx 

- 2kdC+ C_ exp( - 2 Tk) + e(d, T) (9.1) 

where e(d,T)=o[p(T)] uniformly with respect to d E [ - - 2 , 2 ]  as 
T--* +oo; and 

4. limT~ +oo [~(2, T) - -2( - -2 ,  T)] exp(2Tk)=Sk [C+C_] 

Proof. According to Theorem 8.1, there exists a constant t such that 
for every T >  t and for every de  [ - 2 ,  2], Eq. (5.5) has one and only one 
solution to(d, T)E [-Cp(T), Cp(T)] and by (3.1)-(3.3), 2(d, T)~ao~(T, q) 
iff d e  [ - 2 ,  2]. This implies parts 1 and 2 of the theorem. 
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Inserting ~c(d, T) into (5.5), we obtain 

~c(d, T ) =  { fTr [~(x, T)-q(x)]  02(x)~-2(x,d, T) dx 

+ IN(g, T) - d]/a(d, T) T 02(X) C~-Z(X, d, T) dx j (9.2) 

By Lemmas 7.1-7.3 we can rewrite (9.2) in the form 

to(d, T ) =  ,--firr [0(x, T)--q(x)] 02(x)dx[1 +o(1 ) ]  

+ [ o ( 1 ) - d ]  2kC+C_[1 + o ( 1 ) ]  e x p ( - 2 T k ) t  [1 + o(1)] 
t 

= [ ~ ( x ,  T)-q(x)] E(x)dx-2&C+C exp(-2rk)+o[p(T)] 
- - T  

uniformly with respect to d e  [ - 2 ,  2] as T ~  +oo. Therefore we have 
part 3. To prove part 4, we shall consider the derivative 0~c/0d. Since 
~c(d, T) -  f(K(d, T), d), 

~?~c 3f &c ~f 

Next, note that Of/~K = O[Tp(T)] [see Eq. (8.5)] and by Lemmas 7.1, 7.3 
that 

O f _ _  G =-2kC+C exp(-2Tk)[l+o(1)] 
~d 

as T ~  +oo. Thus, since Tp(T)=o(1), we have that &clOd= - 2 k C + C  
exp( - 2 T k ) [ 1  + o(1)] uniformly with respect to de  [ - 2 ,  2], which yields 4. 

QED 

10. THE DIRAC C O M B  

To illustrate the technique above, we shall consider the Dirac comb. 
Let 6(x) be the Dirac function and q ( x ) = - 2 ~ 6 ( x ) ,  ~>0 .  Then the 
negative eigenvalue if 2o = -c~ 2 with normalized eigenfunction O(x)= 
x/~ exp(-c~ Ixl ). Therefore/3 = e and by (9.1) we obtain 

lim [ 2 ( - 2 ,  T ) -  2(2, T)] exp(2c~T) = 8e 2 (10.1) 
T ~  + o o  

where 2 (_2 ,  T) are the limits of the negative allowed energy band of the 
potential function q(x) -2c~ + ~ = Z . . . .  6(x + 2nT). In this case the negative 
band is determined by the following equation (ref. 4, p. 65): 

Ik cosh 2 k T -  c~ sinh 2kT] <~ k (10.2) 

It is easy to check that (10.2) yields (10.1) when k=c~+o(1 )  as T ~  +oo. 
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Finally, we remark that for every K < c~ 2 the functions q0(x), ~(x), e(x), 
and 7(x) are given on the interval Ix[ ~<T by q)(x)=c~-3/2sinhax, 
qS(x) = (fl ,,/-a) i sinh fix, 

e(x)=fl-l( f lcoshflx+esinhfl  [ x [ ) e x p ( - e  ]x]) (10.3) 

c~ sinh fix cosh ax - fl sinh ax cosh fix 
7(x )=  e2(flcoshflx+asinhfl [x]) (10.4) 

with fl = (c~ 2 - x)m. 
Indeed, the function q) is a solution of (1.1) and Wronskian 

0 (p ' -  q)0' = 1; on the other hand, v(x)=-0 and the function O(x) is a solu- 
tion of (2.2) with 2 =  _f12= _ a 2 + x  such that ~ ( 0 ) = ~ o ( 0 ) = 0  and 
(~'(0)= q) ' (0)=7 - m .  Finally, we can find the functions a(x) and 7(x) as 
the solutions of the following system of equations: 

~0 + c~0 = 

A C K N O W L E D G M E N T S  
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